$\mathbf{x} \mathbf{A}$

(1's and 10's)

ONES $(\times 1)$	
$1 \times 1=1$	
$1 \times 2=2$	$2 \times 1=2$
$1 \times 3=3$	$3 \times 1=3$
$1 \times 4=4$	$4 \times 1=4$
$1 \times 5=5$	$5 \times 1=5$
$1 \times 6=6$	$6 \times 1=6$
$1 \times 7=7$	$7 \times 1=7$
$1 \times 8=8$	$8 \times 1=8$
$1 \times 9=9$	$9 \times 1=9$
$1 \times 10=10$	$10 \times 1=10$
TENS $\times 10)$	
$10 \times 1=104$	$1 \times 10=10$
$10 \times 2=20$	$2 \times 10=20$
$10 \times 3=30$	$3 \times 10=30$
$10 \times 4=40$	$4 \times 10=40$
$10 \times 5=50$	$5 \times 10=50$
$10 \times 6=60$	$6 \times 10=60$
$10 \times 7=70$	$7 \times 10=70$
$10 \times 8=80$	$8 \times 10=80$
$10 \times 9=90$	$9 \times 10=90$
$10 \times 10=100$	

Commutative (Order) Property
of Multiplication: Numbers can be multiplied in any order and the product will be the same.
Ex. $3 \times 4=4 \times 3$
Identity (One) Property of Multiplication:
The product of any number \& 1 is that number. Ex. $9 \times 1=9$

Zero Property of Multiplication:

The product of any number \& zero is zero.
Ex. $7 \times 0=0$
x B
(2's and 5's)

* $=$ previously learned fac \dagger

TWOS (x^{2})	
*2 $\times 1=2$	* $1 \times 2=2$
$2 \times 2=4$	
$2 \times 3=6$	$3 \times 2=6$
$2 \times 4=8$	$4 \times 2=8$
$2 \times 5=10$ ¢	$5 \times 2=10$
$2 \times 6=12$	$6 \times 2=12$
$2 \times 7=14$	$7 \times 2=14$
$2 \times 8=16$	$8 \times 2=16$
$2 \times 9=18$	$9 \times 2=18$
*2 $\times 10=20$	*10 $\times 2=20$
FIVES ($\times 5$)	
*5 $\times 1=5$	* $1 \times 5=5$
$5 \times 2=10 \longleftrightarrow$	$2 \times 5=10$
$5 \times 3=15$	$3 \times 5=15$
$5 \times 4=20$	$4 \times 5=20$
$5 \times 5=25$	$5 \times 5=25$
$5 \times 6=30$	$6 \times 5=30$
$5 \times 7=35$	$7 \times 5=35$
$5 \times 8=40$	$8 \times 5=40$
$5 \times 9=45$	$9 \times 5=45$
*5 $\times 10=50$	*10 $\times 5=50$

Commutative (Order) Property
of Multiplication: Numbers can be multiplied in any order and the product will be the same.
Ex. $3 \times 4=4 \times 3$

Patterns for 2's facts:

> multiples of 2 are even numbers
> multiples of 2 end in $0,2,4,6,8$
> any \# multiplied by 2 is doubled

Patterns for 5's facts:

$>$ multiples of 5 end in 0 or 5
$>$ use the numbers on the clock to help you remember these facts

x C

(squares and 9's)

* = previously learned fact

SQUARES (DOUBLES)	
*1 $\times 1=1$	In multiplication, the doubles are
*2 $2 \times 2=4$	
$3 \times 3=9$	called "squares".
$4 \times 4=16$	This is because
*5 $\times 5=25$	their array forms a
$6 \times 6=36$	Ex. $3 \times 3=9$
$7 \times 7=49$	
$8 \times 8=64$	
$9 \times 9=81$	
*10 $\times 10=100$	
NINES ($\times 9$)	
*9 $\times 1=9$	*1 $\times 9=9$
*9 $\times 2=18$	*2 $\times 9=18$
$9 \times 3=27$	$3 \times 9=27$
$9 \times 4=36$	$4 \times 9=36$
*9 $\times 5=45$	*5 $\times 9=45$
$9 \times 6=54$	$6 \times 9=54$
$9 \times 7=63$	$7 \times 9=63$
$9 \times 8=72$	$8 \times 9=72$
$9 \times 9=81$	
*9 $\times 10=90$	* $10 \times 9=90$

Commutative (Order) Property
of Multiplication: Numbers can be multiplied in any order and the product will be the same.
Ex. $3 \times 4=4 \times 3$
Tricks to learning 9's:
$>$ Count your fingers

$$
3 \times 9=27
$$

\rightarrow Add the digits of the product together and the sum is 9 .
Ex. $3 \times 9=27 \quad 2+7=9$
x D
(3's and 6's)

* = previously learned fact

THREES ($\times 3$)	
* $3 \times 1=3$	*1 $\times 3=3$
* $3 \times 2=6$	*2 $\times 3=6$
* $3 \times 3=9$	
$3 \times 4=12$	$4 \times 3=12$
* $3 \times 5=15$	*5 $\times 3=15$
$3 \times 6=18 \longleftrightarrow$	$6 \times 3=18$
$3 \times 7=21$	$7 \times 3=21$
$3 \times 8=24$	$8 \times 3=24$
* $3 \times 9=27$	*9 $\times 3=27$
* $3 \times 10=30$	* $10 \times 3=30$
SIXES ($\times 6$)	
* $6 \times 1=6$	* $1 \times 6=6$
*6 $\times 2=12$	* $2 \times 6=12$
$6 \times 3=18 \longleftrightarrow$	$3 \times 6=18$
$6 \times 4=24$	$4 \times 6=24$
*6 $\times 5=30$	*5 $\times 6=30$
*6 $\times 6=36$	
$6 \times 7=42$	$7 \times 6=42$
$6 \times 8=48$	$8 \times 6=48$
* $6 \times 9=54$	*9 $\times 6=54$
* $6 \times 10=60$	* $10 \times 6=60$

Commutative (Order) Property
of Multiplication: Numbers can be multiplied in any order and the product will be the same.
Ex. $3 \times 4=4 \times 3$
Tricks to learning 6's:
> "Double the double" Ex. $6 \times 4=24$ Once you know the 3's, then double the product to help you solve the 6's.

Ex. $3 \times 4=12$ so $6 \times 4=$ the double of $12=24$
x E
(4's and 8's)

* $=$ previously learned fact

FOURS ($x 4$)

$* 4 \times 1=4$	$* 1 \times 4=4$
$* 4 \times 2=8$	$* 2 \times 4=8$
$* 4 \times 3=12$	$* 3 \times 4=12$
$* 4 \times 4=16$	
$* 4 \times 5=20$	$* 5 \times 4=20$
$* 4 \times 6=24$	$* 6 \times 4=24$
$4 \times 7=28$	$7 \times 4=28$
$4 \times 8=32$	
$8 \times 4=32$	
$* 4 \times 10=40$	
$4 \times 10 \times 4=40$	
EIGHTS $(\times 8)$	

$* 8 \times 1=8$		$* 1 \times 8=8$
$* 8 \times 2=16$		$* 2 \times 8=16$
$* 8 \times 3=24$		$* 3 \times 8=24$
$8 \times 4=32$		$4 \times 8=32$
$* 8 \times 5=40$	$* 5 \times 8=40$	
$* 8 \times 6=48$	$* 6 \times 8=48$	
$8 \times 7=56$	$7 \times 8=56$	
$* 8 \times 8=64$		
$* 8 \times 9=72$	$* 9 \times 8=72$	
$* 8 \times 10=80$	$* 10 \times 8=80$	

Commutative (Order) Property
of Multiplication: Numbers can be multiplied
in any order and the product will be the same.
Ex. $3 \times 4=4 \times 3$
Tricks to learning 4's and 8's:
> "Double the double" Ex. $4 \times 6=24$
If you know the double of 6 is 12 , then double the 12 to get 24 .

Once you know the 4's, then double the product to help you solve the 8's.
Ex. $4 \times 3=12$ so $8 \times 3=$ the double of $12=24$

Now that you know steps A - E, you have already learned your 7's! Look below:

* = previously learned fact

SEVENS ($\times 7$)	
$\begin{array}{r} 7 \times 1=7 \\ * 1 \times 7=7 \end{array}$	Step A
$\begin{array}{r} 7 \times 2=14 \\ * 2 \times 7=14 \end{array}$	Step B
$\begin{aligned} 7 \times 3 & =21 \\ * 3 \times 7 & =21 \end{aligned}$	Step D
$\begin{array}{r} 7 \times 4=28 \\ * 4 \times 7=28 \end{array}$	Step E
$\begin{array}{r} 7 \times 5=35 \\ * 5 \times 7=35 \end{array}$	Step B
$\begin{aligned} 7 \times 6 & =42 \\ * 6 \times 7 & =42 \end{aligned}$	Step D
*7 $\times 7=49$	Step C
$\begin{aligned} 7 \times 8 & =56 \\ * 8 \times 7 & =56 \end{aligned}$	Step E
$\begin{array}{r} 7 \times 9=63 \\ * 9 \times 7=63 \end{array}$	Step C
$\begin{array}{r} 7 \times 10=70 \\ * 10 \times 7=70 \end{array}$	Step A

